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Inertial particle segregation by turbulence
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We study collections of heavy and light small spherical particles initially well mixed with each other,
subjected to linear~Stokes! drag force and gravity, and falling through a fluid turbulence. We introduce the
segregation power spectrum, which we use to define the segregation length scale. Kinematic simulation pre-
dicts that the turbulence can segregate heavy and light falling particles and leads to a well-defined segregation
length scale. The properties of this length scale and of the segregation power spectrum used to define it are
discussed and, where possible, explained.
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I. INTRODUCTION

Suspended particles such as soil dust from wind eros
and man-made pollutants can be found in many turbu
flows. Recent experimental and computational studies of
motion of small particles in turbulent flows have shown ho
the displacementxp and velocity v(t) of a particle differ
from those@xf andu(t)] of a fluid element, depending on th
size of the particle and on the drag and body forces acting
it. Maxey @1#, Squires and Eaton@2#, Wang and Maxey@3#,
and Fung@4# showed that the distribution of particles in
turbulent flow is not uniform; instead, particles tend to clu
ter preferentially in regions of low vorticity and high stra
rate~see also the comprehensive recent study by Ahmed
Elghobashi@5# and references therein!. This means that mod
els of particle dispersion in turbulent flows should incorp
rate some of the spatiotemporal structural features of tu
lent flow field realizations. But this also means that turbul
flows may be able to segregate particles of different size
densities so that initially well-mixed collections of differe
types of particle should become unmixed by the turbule
and give rise to pockets with predominantly one type of p
ticle. Is it possible to define a length scale characterizing
segregation?

In this paper we investigate the ability of the turbulence
segregate particles of different inertias~i.e., sizes or densi-
ties! falling through turbulence and propose a definition
the segregation length scale. We use kinematic simula
~KS!, which incorporates some degree of spatiotempo
flow structure designed to mimic some of the salient featu
of small-scale turbulence. For this paper’s purpose of qu
tative demonstration, we concentrate attention on tw
component homogeneous and isotropic turbulence, and
KS used is designed to have a Kolmogorov25/3 energy
spectrum and corresponding frequencies in its temp
structure.

The paper is organized as follows. In Sec. II we introdu
the equation of motion for heavy particles. To be solved, t
equation requires modeling of the turbulence, and in Sec
we describe KS. The results of numerical simulations c
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cerning mixtures of heavy particles with different inertias
a turbulent flow are presented in Sec. IV, and we conclud
Sec. V.

II. EQUATION OF MOTION FOR INERTIAL PARTICLES

We consider a particle of massmp and densityrp , located
at a pointxp(t) and moving with velocityv(t) in a fluid of
densityr f and kinematic viscosityn. The fluid velocity field
is given by u(x,t), and we denote the instantaneous flu
velocity at the position of the particle byu(xp ,t). Then the
equation of motion for the particle is

mp

dv

dt
5F~u,v,t !. ~1!

The forceF on the particle, which is still the subject of muc
current research, is made up of many different contributio
including, for example, the acceleration forceFA , the lift
force FL , the body forceFB , the drag forceFD , and the
Boussinesq-Basset~often just called Basset—see Vojir an
Michaelides@6#! history term~see Huntet al. @7# and Mei@8#
for reviews!.

If a particle in a turbulent flow is heavy~i.e., rp@r f) and
spherical, and if its radiusa is small relative to the smalles
length scale of the turbulence~the Kolmogorov length scale
h, which is about 1 mm in the lower atmosphere!, then only
the drag and buoyancy forces are important~terms involving
the pressure gradient force, the virtual mass force, and
Basset force can be neglected!, and Eq.~1! becomes

mp

dv

dt
5FD1FB , ~2!

whereFB5mpg. g is the acceleration due to gravity and
is oriented downward parallel to they axis, which points
upward. In the limit where the particle Reynolds numb
Rep52auu(xp ,t)2v(t)u/n is much smaller than 1, the dra
force can be approximated by the Stokes linear formFD
56pam@u(xp ,t)2v(t)#, and Eq.~2! becomes
©2003 The American Physical Society09-1
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dv

dt
5

1

tp
@u~xp ,t !2v~ t !#1g, ~3a!

where the relaxation timetp is given by

tp5
mp

6par fn
5

2rpa2

9r fn
. ~3b!

A Stokes drag is assumed here. Previous experience indic
that the Stokes drag gives qualitatively similar results
some nonlinear empirical drag laws~Reeks@9# Wang and
Stock @10#, Wang and Maxey@3#, and Fung@11#!. Despite
the restrictions imposed, Eq.~3! is applicable to many differ-
ent problems, such as aerosols in gases and small particl
water. Under most atmospheric conditions, Eq.~3! would
apply, for instance, to aerosol particles or cloud drops w
radii less than about 100mm. To be solved, Eq.~3a! must of
course be coupled to

dxp

dt
5v~ t !. ~3c!

If we setu50 in Eq. ~3a! and take the limitt→`, we obtain
v(t)5VT whereVT5tpg is the Stokes settling velocity~ter-
minal velocity in a still fluid!. When the velocity field is
turbulent, however,u needs to be modeled before Eq.~3! can
be solved. In KS, the turbulent velocity fieldu(x,t) is mod-
eled as a sum of random incompressible Fourier modes
a 25/3 energy spectrum. We assume that the particles do
significantly affect the fluid turbulence~an assumption that is
increasingly valid for increasingly smalltp) and that they are
dilute enough not to interact with each other. In the n
section we introduce the KS model that we use. For t
paper’s purposes of demonstration it is enough to cons
planar velocities and velocity fields, i.e., two components
a vertical plane. This does not mean to say, of course,
two- and three-dimensional turbulence are trivially inte
changeable, as they of course have different dynamics. H
ever, these dynamics are not incorporated in KS, which ho
information only about the energy spectrum, incompressi
ity, and the time persistence of streamlines.

III. TURBULENT LANGRANGIAN VELOCITIES

We follow the approach of Turfus and Hunt@12#, Sa-
belfeld @13#, and Funget al. @14# and generate on the com
puter an incompressible two-dimensional turbulentlike
locity field u(x,t) that is identical to that of Vassilicos an
Fung @15#, i.e.,

u~x,t !5 (
n51

Nk

@An cos~kn•x1vnt !1Bn sin~kn•x1vnt !#,

~4!

whereNk is the number of modes in the simulations and
Cartesian coordinates ofAn , Bn , and kn are given byAn
5An(cosfn ,2sinfn), Bn5Bn(2cosfn ,sinfn), and kn
5kn(sinfn ,cosfn). The anglesfn are random and uncorre
lated with each other and the velocity field~4! is incompress-
04630
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ible becauseAn•kn5Bn•kn50 for all n. The positive ampli-
tudesAn andBn are chosen according to

An
25Bn

25E~kn!Dkn ~5!

whereE(k) is a prescribed Eulerian energy spectrum of t
form

E~k!5E0L~kL!25/3 ~6!

in the range 2p/L5k1<k<kNk
52p/h ~whereL is the larg-

est eddy length scale of the turbulence! and such thatE(k)
50 outside this range.Dkn5(kn112kn21)/2 for 2<Nk
<Nk21, Dk15k22k1 , andDkNk

5kNk
2kNk21 . The distri-

bution of wave numberskn is geometric, i.e.,

kn5k1an21,

wherea is a dimensionless number which is a function
L/h and Nk becausekNk

52p/h. @Hence a5(L/h)1/(Nk

21).] From (1/2)u825*E(k)dk, it ensues thatu82'3E0 .
The frequenciesvn in Eq. ~1! determine the unsteadines

associated with wave moden. We chose a model@15,16#
where the unsteadiness frequencyvn is proportional to the
eddy turnover time of wave moden, i.e.,

vn5lAkn
3E~kn!, ~7!

wherel is a dimensionless constant.
The KS velocity fields simulated here are stationary

time, and the autocorrelation of Lagrangian velocities f
lowing fluid elements isRL(t)5exp(2t/TL) ~see Fung and
Vassilicos@16# Flohr and Vassilicos@17#!. We find, in this
paper’s KS, that the integral length scaleL'L/3. From nu-
merical simulations of statistical ensembles of fluid elem
trajectories, we also find in this paper’s KS that the Lagra
ian integral time scaleTL'0.2L/E0

1/2.
It may be worth noting that in KS we prescribe a sp

tiotemporal structure for the flow via incompressibility an
Eqs. ~4!–~7!. This spatiotemporal structure incorporates e
dying and straining flow regions@14–16#.

IV. SIMULATIONS AND RESULTS

Denoting byx and y the horizontal and vertical coordi
nates, respectively@y pointing upward, i.e.,g5(0,2g)], the
initial condition of our simulations consists of 4000 particl
of relaxation timetp1 uniformly distributed along the hori-
zontal liney50 betweenx52L/2 andL/2 ~L is the largest
eddy length scale of the turbulence! and 4000 particles of
relaxation timetp2>tp1 also uniformly distributed along the
same stretch of horizontal line~see Fig. 1!. The two different
types of particle are therefore perfectly well mixed with ea
other at timet50. We also setv(0)5u„xp(0),0… @and we
also tried starting particle velocitiesv(0)5ju„xp(0),0… with
j randomly distributed between21 and 1, without detecting
any appreciable difference in our specific results#. The ques-
tion is, do the different species of particles remain w
mixed at later times?

In this paper we address this question by solving Eqs.~3a!
9-2
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and~3c! with the velocity field of the fluid turbulence spec
fied by Eqs.~4!–~7!. Values of the parametersL, h, Nk , and
l used in this paper’s KS are given in Table I. Values of t
relaxation timestp1 andtp2 and of their ratior 5tp2 /tp1 are
given in Tables II–III. For comparison with the values oftp1
andtp2 in these tables, note thatTL'0.2 in all the simula-
tions here.

Inertial particle trajectories are integrated till they rea
the horizontal liney52bL where theirx coordinates are
recorded~in this paper we have experimented withb51 and
2 and found no appreciable difference in our results, wh
have all been obtained forgtp1

2 <L). Thesex coordinates are
used to derive two histogramsn1(x)5n(tp1 ,x) and n2(x)
5n(tp2 ,x), which give the number of particles of relaxatio
times tp1 and tp2 , respectively, that have crossed the ho
zontal liney52bL betweenx andx1Dx whereDx is the
histogram’s bin size~see Fig. 2!.

It is interesting to note from Figs. 2~a! and 2~b! that the
histograms are irregular for both relaxation timestp1 and
tp2 . Hence the differencen(tp2 ,x)2n(tp1 ,x) can be very
significant @Fig. 2~c!#. We might therefore tentatively con
clude that according to KS the turbulence can segregate
heavy and light particles. In what follows below, this ten
tive conclusion is corroborated and, more importantly p
haps, quantified by averaging over a large number of tur
lent flow realizations. These averages also enable u
introduce a segregation length scale and discuss segreg
properties as functions of the parameters of the problem

FIG. 1. Illustration of the numerical experiment and the moti
of the particles under the influence of the flow field, the gravity, a
their inertia.

TABLE I. Parameters used in kinematic simulation.

Case tp1
tp2

r l L/h Nk Falling distance

a 0.1 0.6 6 0.5 91 64 L
b 0.1 0.6 6 0.5 91 128 L
c 0.1 0.6 6 0.5 273 256 L
d 0.1 0.6 6 0.5 91 64 2L
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The first and second moments of the difference betw
the two histograms are defined as follows:

first moment: K 1

L E ~n12n2!dxL 50,

second moment: K 1

L E ~n12n2!2dxL 5M2 ,

where the angular brackets signify an average over 150
bulent flow realizations. Note that the first moment is alwa
equal to zero.

In all our runs, the smallest time scale of the turbulence
smaller thantp1 and tp2 @which is consistent with our re
quirements thatrp@r f and a!h, provided that rp /r f
@(h/a)2], and in KS this smallest time scale isth

;1/AkNk

3 E(kNk
). Hence, we may assume thatM2 is inde-

pendent of this smallest time scale, and the parametric
pendence ofM2 for small enough bin size is given by

M25M2~u8,TL ,tp1 ,tp2 ,g!

5~Dx/L !2m2~r ,tp1 /TL ,gTL /u8!, ~8!

wherem2 is a dimensionless function. In Fig. 3 we plot th
dependence ofM2 on the two dimensionless parametersr
(r 5tp2 /tp1 is larger than 1 by definition! andtp1 /TL . Note
that the factor 104 multiplying M2 in these figures is effec
tively the inverse of (Dx/L)2 asDx/L5O(1022) sinceDx
'h in our runs. Two regimes should readily be distinguish
depending on whethertp1 is larger or smaller thanTL : when
TL!tp1 we should expectM2'0 because no segregatio
can be expected when the relaxation time of both types
particles is much larger than the Lagrangian correlation ti

d

TABLE II. Ratio of relaxation times.

Case 1

tp2
/tp1

rCase 2 Case 3

0.12/0.1 0.144/0.12 0.168/0.14 1.2
0.14/0.1 0.168/0.12 0.196/0.14 1.4
0.16/0.1 0.192/0.12 0.224/0.14 1.6
0.18/0.1 0.216/0.12 0.252/0.14 1.8
0.20/0.1 0.240/0.12 0.280/0.14 2.0
0.40/0.1 0.480/0.12 0.560/0.14 4.0
0.60/0.1 0.720/0.12 0.840/0.14 6.0
0.80/0.1 1.960/0.12 1.120/0.14 8.0
1.00/0.01 1.200/0.12 1.400/0.14 10.

TABLE III. Values of relaxation times.

tp1
tp2

r

0.2 1.2 6
0.3 1.8 6
0.4 2.4 6
0.5 3.0 6
9-3
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FIG. 2. One typical case of the histogramsn(tpi
,x) ( i 51,2)

along the horizontal liney52L in the KS case. HereTL50.2,
u8'1, andg510. Also, 2p/L51.1, 2p/h5100, Nk564, and the
unsteadiness parameterl50.5. ~a! tp150.1, ~b! tp250.4, and~c!
the differencen(tp2 ,x)2n(tp1 ,x).
04630
of the turbulence; and whentp1<TL we should expectM2 to
be an increasing function ofr in the range 1<r<TL /tp1
because of the increasing difference in particle relaxat
times, but asymptotically constant in the limitr @TL /tp1
because in that limit the relaxation time of one of the tw
particles is larger thanTL . These qualitative expectations a
confirmed in Fig. 3, even though the caseM2'0 is not ab-
solutely evident from the data; note, however, that forr
@TL /tp1 , M2 decreases with increasingtp1 /TL , presum-
ably reaching zero whentp1 /TL@1. We also found these
results not to depend significantly ong, at least for the few
values ofg that we tried (gTL /u852,3,4). Note also that
for r @TL /tp1 , M2 decreases with increasingtp1 /TL , pre-
sumably reaching zero whentp1 /TL@1.

In order to define a characteristic length scale of segre
tion, l c , we Fourier transformn(tp1 ,x)2n(tp2 ,x) and cal-
culate the power spectrumF(k) of n(tp1 ,x)2n(tp2 ,x)
@with an average over 150 turbulent flow realizations so t
*F(k)dk5M2]. If a well-defined length scale characteriz
ing segregation does exist, this power spectrum should
clearly peaked at a wave number 2p/ l c , which should be
significantly larger than 2p/LD , whereLD is the length of
the total extent of the horizontal liney52bL that the par-
ticles have crossed (LD is significantly larger thanL!. In
Figs. 4 and 5 we plotF(k) in the range 2p/LD<k
<2p/Dx for a number of different parameters~see Tables II
and III!. The first and broad conclusion that can be dra
from these figures is that a well-defined characteristic len
scale of segregationl c exists that is clearly smaller thanLD .
~We find no significant variability in these spectra f
gTL /u852,3,4 except a slight one in the value ofl c .) Also,
the power spectrumF(k) appears power-law shaped in som
cases.

A finer analysis of these results reveals the parame
variability of l c . Because we consider values oftp1 andtp2
larger thanth , l c may be expected to be a function ofu8,
TL , g, tp1 , andtp2 only, so that by dimensional analysis

l c /L5 f ~r ,tp1 /TL ,gTL /u8!, ~9!

FIG. 3. M2 as a function ofr for different values oftp1 /TL

obtained with KS. These different values are listed in Table II. T
parameters determining the KS are the same as in Fig. 2.d, case 1
with tp150.1, j, case 2 withtp150.12, and., case 3 withtp1

50.14.
9-4
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FIG. 4. KS power spectraF(k) vs k for different inertial ratios
r 5tp2 /tp1 with fixed tp150.1.~a! tp1,TL<tp2 . TL50.2 andtp2

varies from 0.2 to 1.0 so thatr varies from 2 to 10. This figure
corresponds to case 1 in Table II. The parameters determining
KS are the same as in Fig. 2.r 52 ~dot-dot-dashed!, 4 ~dot-dashed!,
6 ~dashed!, 8 ~dotted!, and 10~solid!. ~b! tp1,tp2,TL . TL50.2
and tp2 varies from 0.12 to 0.18 so thatr varies from 1.2 to 1.8.
This figure corresponds to case 1 in Table II. The parameters d
mining the KS are the same as in Fig. 2.r 51.2 ~dot-dot-dashed!,
1.4 ~dot-dashed!, 1.6 ~dashed!, and 1.8~solid!. ~c! The same as~a!
but with g51.0. r 52 ~dot-dot-dashed!, 4 ~dot-dashed!, 6 ~dashed!,
8 ~dotted!, and 10~solid!.
04630
where f is a dimensionless function. Again we distinguis
between the following two regimes:TL!tp1 , in which case
we expectl c'0; and tp1,TL , in which case we should
expect l c to be an increasing function ofr in the range 1
<r<TL /tp1 but asymptotically constant in the limitr
@TL /tp1 . This is indeed what is observed~see Fig. 6!.

Power spectraF(k) for cases wheretp1,TL<tp2 are
given in Fig. 4~a!, where it may be observed thatF(k)
;k21 for k.2p/ l c andr @1. Power spectraF(k) for cases
wheretp1,tp2,TL are presented in Fig. 4~b!, and, finally,
power spectraF(k) for cases whereTL<tp1,tp2 are given
in Fig. 5, whereF(k) may be observed to decay faster th
k21 for k.2p/ l c and in fact faster for larger values oftp1
andtp2 .

A simple dimensional argument leading toF(k);k21 for
k.2p/ l c in the case tp1,TL!tp2 and gtp1

1/2L1/2/u83/2

he

er-

FIG. 5. KS power spectraF(k) vs k for fixed inertial ratior
56 and varyingtp1

such thatTL<tp1,tp2 . TL50.2 andtp1 with
fixed inertial ratio r and tp1 varies from 0.2 to 0.5. This figure
corresponds to Table III. The parameters determining the KS are
same as in Fig. 2.tp150.2 ~dot-dashed!, 0.3 ~dashed!, 0.4 ~dotted!,
and 0.5~solid!.

FIG. 6. Characteristic length scale of segregation,l c , as a func-
tion of r for different values oftp1 /TL obtained with KS. These
different values are listed in Table II. The parameters determin
the KS are the same as in Fig. 2.d, case 1 withtp150.1, j, case
2 with tp150.12, and., case 3 withtp150.14.
9-5
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<O(1) can be developed as follows. The power spectr
F(k) cannot depend onth for reasons already mentione
and cannot depend ontp2 either in the limit whereTL
!tp2 . Furthermore, in the rangek.2p/ l c , small-scale seg-
regation andF(k) cannot be expected to depend on t
large-scale quantitiesL andu8. Hence, by dimensional con
straints,

F~k!5F~k,g,tp1!5k21f~kgtp1
2 !, ~10!

wheref is a dimensionless function.
The gravitational accelerationg cannot by itself segregat

particles of different relaxation times. However,g can indi-
rectly influence this segregation by influencing the tim
taken for particles to fall through the eddies. Neverthele
when the characteristic vertical distancegtp1

2 that a particle
would travel by gravitation alone in the course of a rela
ation timetp1 is much smaller than the size of the eddy, th
we might expectg not to influence the time taken by th
particle to fall through this eddy and therefore Eq.~10! not to
depend ong. The smallest eddy size that can influence s
regation is noth but instead the size of the eddy with cha
acteristic time equal totp1 . The characteristic time for an
eddy of sizek21 is 1/Ak3E(k) ~see the KS description in th
previous section!. Hence, the smallest eddy size that c
cause segregation isL(u8tp1 /L)3/2. The condition for Eq.
~10! not to depend ong is thereforegtp1

2 <L(u8tp1 /L)3/2,
i.e., approximatelygtp1

1/2L1/2/u83/2<O(1). Dimensional re-
quirements imply that in this regime the spectrum scales

F~k!;k21, ~11!

in agreement with the power-law spectra reported in Fig. 4~a!
and also in Fig. 4~c!, where the tendency for a collapse asr
increases is perhaps clearer becausegtp1

1/2L1/2/u83/2 is smaller
than in Fig. 4~a!.

Finally, we also report Figs. 7 and 8 where evidence
presented showing thatF(k) is insensitive to the unstead

FIG. 7. KS power spectraF(k) vs k with 2p/L51.1, 2p/h
5100,Nk564,TL50.2,g510,u8'1, fixed inertial ratior 56, and
fixed tp150.1, but with different unsteadiness parameterl50.3
~dashed!, 0.5 ~solid!, and 0.7~dotted!.
04630
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ness parameterl in the range between 0.3 and 0.8 and a
independent ofh ~and thereforeth as assumed in our argu
ments above!.

V. CONCLUSION

We have introduced a segregation power spectrumF(k)
and a segregation length scalel c and demonstrated thatl c is
well defined in a kinematic simulation of particle dispersio
For particles of very different relaxation times, and for wa
numbers larger thanl c

21, it is found thatF(k);k21 pro-
vided that th<tp1,TL!tp2 and gtp1

1/2L1/2/u83/2<O(1).
The present study also supports the view that spatiotemp
flow structure can cause particles of different inertias to s
regate in a turbulent flow. This conclusion is consistent w
the results of Maxey@1#, Squires and Eaton@2#, Wang and
Maxey @3#, and Fung@4#, who have shown that the flow
structure of the small-scale turbulence influences the con
tration fields of dense particles. The effect of intense a
persistent local vortical structure can quickly modify the p
ticle concentration field near these local regions. Partic
tend to accumulate in regions of high flow strain rate or lo
flow vorticity because of an inertial bias. This preferent
accumulation has been confirmed by the results from
direct numerical simulations in homogeneous turbulence
Squires and Eaton@2# and Wang and Maxey@3#, and by
kinematics simulations in homogeneous turbulence
Maxey@1# and Fung@4#. We hope the present study indicat
that the structural view of turbulent flows can contribute
the development of multiphase flow modeling, in addition
the more commonly used statistical view.
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FIG. 8. KS power spectraF(k) vs k with 2p/L51.1, TL

50.2, g510, u8'1, l50.5, r 56, and tp150.1. Nk564, L/h
591, falling distanceD52L ~solid!; Nk5128, L/h591, falling
distanceD52L ~dotted!; Nk5256, L/h5273, falling distanceD
52L ~dashed!; and Nk564, L/h591, falling distanceD522L
~dot-dashed!.
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